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Abstract

A method for determination of thermal condition of laminated elements of structures is offered. The method is based
on a presentation of temperature distribution through the thickness of each layer by means of orthonormal Legendre
polynomials. As a numerical example, a solution of the non-stationary heat conduction problem for laminated strips
and plates is obtained. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Changes of temperature are often the cause of failure of structures, especially multilayer ones, when
temperature difference between internal and external surfaces is significant.

The majority of publications, devoted to thermoelasticity of laminated structures, deal with deformation
of such structures under conditions of steady temperature fields (Wu and Tauchert, 1980; Reddy and Hsu,
1980; Khdeir, 1997; Verijenko et al., 1999) or dynamic temperature fields with prescribed distribution
through the thickness (Shuji and Masataka, 1991; Heuer et al., 1992). The hypothesis about a piecewise-
linear temperature distribution through the thickness of a laminated package is often applied. However, the
non-stationary character of a problem requires a more exact description of the temperature field obtained
directly from solution of a heat conduction equation.

Savoia and Reddy (1995) used the quasi-static theory of thermoelasticity to examine stresses in multi-
layer rectangular simply supported plates affected by thermal and mechanical loads. The authors applied
polynomial and exponential temperature distributions through the thickness of each layer which allow to
consider steady-state and transient thermal conditions. The temperature distribution over top and bottom
surfaces of plates is given.

Reddy and Chin (1998) have numerically analysed thermomechanical behaviour of functionally
graded cylinders and plates under transient thermal loading conditions. Temperature and stress fields are
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determined from the non-linear coupled thermoelastic problem. The results obtained are compared to those
from the uncoupled formulation. Temperature and displacements are approximated by the Lagrange in-
terpolation functions.

Tanigawa et al. solved the problems of thermal bending of laminated composite beams (Tanigawa et al.,
1991a) and rectangular laminated plates (Tanigawa et al., 1991b) under a heat supply on top and bottom
surfaces. Temperature fields are obtained from a solution of the transient heat conduction problem. The
one-dimensional case in the direction of thickness is considered for a beam. The three-dimensional heat
conduction problem is dealt with for a plate. The Laplace transformation over the time and finite cosine
transformation are applied. The authors examined the effect of relaxation on thermal deflection and stresses
of the non-homogeneous plates.

Santhosh (1992) determined the distribution of temperature and strains through the thickness in layered
media subjected to thermal shock in terms of equations of thermoelasticity including inertia effects. The
solution is obtained on the basis of an explicit-implicit finite difference procedure. The numerical results are
presented for laminate composites fixed on a foundation. The thermal shock is given for a free surface by
Heaviside function. It is shown that for a small time interval the influence of dynamic effect of thermal
stresses is significant.

Nusier and Newaz (1998) have obtained a temperature field in a three-layer cylinder under transient
heating. The temperature distribution through the thickness of the cylinder results from solution of the heat
conduction equation. Over the radial coordinate expansion was applied in terms of Bessel functions.

Kantor et al. (2000) offered a method of solution of the one-dimensional non-stationary heat conduction
problem in a laminated medium based on introduction of the temperature distribution in each layer by a
system of Legendre polynomials. In the present paper this method is generalized for the case of a laminated
strip and laminated rectangular plate with an internal heat source.

2. Non-stationary heat conduction in a laminated strip
A laminated strip of length / assembled from arbitrary number of isotropic layers (i = 1,N, Fig. 1) is

being considered.
The heat conduction equation for the ith layer has the form
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Fig. 1. Multilayer strip.
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where v; = 4;/(y;¢;) is the thermal diffusivity, 4; is the thermal conductivity, y; is the density of the ith layer
material, ¢; is the specific heat at constant volume of the ith layer.

For the sake of simplicity, let us consider a symmetrical problem concerning the middle of a strip
x = 1/2, and seek a solution in the form

M
HEEEDY [a,-k(t)fl (2) + bu(1)f2(2) + cir(2) f3(2) | cos(aux), 2)
=1
where 0 <x<1/2, oy = 2n(k — 1)/1, t is time. Coordinate z; is measured from an internal surface of each
layer.
As functions f,, r = 1, 2, 3, we choose Legendre orthonormal polynomials of the (» — 1)th degree for the
interval 0 <z< 1 (Jackson, 1948)

fi=1l, f=v3(2-1), fi=V5(62-6+1) 3)

1
/ fkfldf = Ou- (4)
0

The following designations are used: zZ = z;/h;, 0 <z; < h;; h; is the thickness of the ith layer.
Substituting expression (2) in Eq. (1) and projecting the obtained equation to the system of functions f,
(3), we can find the relationship for the kth harmonic of a series (2)

v ((awlf /= odfi] [, cos (ayx) | .
v,-/ bu [fy /h} — aif2] f, cos (ax) pdz = / (c'likfl + by fr + é,-kf,;)ﬁ. cos (oyx) dz,
O Uenlfy/h? = 23], cos (aux) 0

where
d’ day ;  dby dey
11 — r .i — Yk b[ — Sk .i _ i )
Sr=gm =g =g =g
In view of the orthogonality condition (4) of the system of functions f, (3), we obtain
12v/5 .
Ajj = Vih—\g/_cik - Viﬁxiaik, by = _vi“ibih Cik = _viaicik- (5)

As initial conditions let us accept
Ti(x,z;,0) = const.

In the absence of heat exchange, and when the power of heat sources is equal to zero, at ¢ = 0, it follows
that

a,«k(O) == To, b,k(O) = Cik(O) = 0, i= I,N

The boundary conditions of convective heat transfer over the top and bottom surfaces of the strip are
MV, = “t(Tt -1 \21:h1>v —InV x|, o = o (Tb - TNLN:o)» (6)

where o, and ay, are the convective heat transfer coefficients at the top and bottom of the strip, 7; and T;, are
the temperatures of environments over the top and bottom surfaces, respectively.

Taking into account that V7, = % T;, f1 = 1, and substituting the relationship (2) into conditions (6), the
following equalities are obtained:
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2—1 (b1k2\/§ + Clk6\/§) = OCt(Tl —ay — by V3 — clk\/g)’

i (7)

=l (kaZ\/g — CNk6\/§) = 0Oy (Tb — anr + ka\/§ — CNk\/§>~

hy

The conditions of equality of heat flows and temperatures on interfaces of layers are:
- )vz'VTi|z,:0 + }~i+IVTi+l|z:hH1 = Oa T;|z,':0 - Ti+1 |Z:hi-l = 07 = laN -1
It follows from this that

Ai Ai

- <btk2\/§ - Cik6\/§) +7 (bi+1,k2\/§ + ci+1,k6\/§) =0, (8)
hi hi+l

aw — baV3 + ey V5 — Aip1x — biy1xV3 — Ci+l,k\/§ = 0. )

The joint number of boundary conditions (7) and interface conditions (8) and (9) is equal to 2NM. The
number of unknown time-dependent functions in the given problem is equal to 3NM. Referring to the
second and third Eq. (5), we note that they have zero partial solutions, as the initial temperature field is
steady. We reject these equations. It means that the change of functions by (z) and ¢ (¢) with time in ap-
proximation (2) is determined by their relationship from a;(¢). Then the number of unknown functions
ayx (1), by (1) and ¢ (¢) equals to 3NM; it is equal to the number of Eq. (5) for a;(¢) and number of conditions
(7)—(9), that is 3NM.

To define the functions by (¢) and c;(¢), it is necessary to use conditions (7)—(9), expressing them in terms
of a;(¢). This method allows the number of equations to be equated to the number of unknowns. The
solution obtained on each time step will exactly satisfy the boundary conditions and the conditions of the
interface layers. The non-stationary character of the problem will be taken into consideration owing to
the functions a; (¢) to be determined from the solution of Cauchy problem.

By virtue of linearity of the problem, the system of equations breaks up into M independent systems. If a
heat-generating film with power W(x)H(¢) is placed between the ith and (i + 1)th layers, it is necessary to
take into account, on the right-hand side of the appropriate condition (8), a harmonic

5 (12
W, = 7 W (x) cos (oyx) dx
0
multiplied by H(¢), where H(¢) is Heaviside function.
In the specific case when

Wx)=w at 0<|x|<I"/2,
Wx)=0 at [I"/2<|x|<1/2,

the coefficients 1, are given by

R SN2 VI
T ak—1) I

m =1/l W k=2,M.

As an example, let us arrange a heat-generating film between the first and second layers of a strip. Such
arrangement of the film is usual for heated laminated glasses of vehicles.

Considering the system of conditions (7)-(9) as a system of linear algebraic equations in a; (¢), b;(¢) and
Cik(t)

[rv =Q, (11)
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for an evaluation of the right-hand sides of Eq. (5) in the course of integration of these equations in time,
solve the system (11) on each process step.
Construct the matrix and vector of the right-hand side of the system (11)

=% 7= V3@ 24/ h), 5= V5 + 641 /h),

V22 = _2\/5/11/}’1’ V23 = 6\/521/}117 Vo4 = 2\/§iz/h2, Y25 = 6\/§)~2/h2»
=1 1= _\/5» V33 = \/gv va=—1, ¥ = _\/57 V36 = _\/57

Vs = —2\/§/lz/h2, Vag = 6\/522/}!27 Yag = 2\/§/13/h3, Va9 = 6‘/323/}‘37
Isa=1, 1= —V3, 753 = V5, Vsa =1, ¥ss = -3, Vs6 = —V5,.
Yon-23N-4 = _Zﬁ)vN—l/hN—la Yoan—23N-3 = 6\/giN—l/hN—l,

Yon-23N-1 = 2‘/§)»N/hN7 Yan-2N = 6\/SlN/th Yoan-13N-5 = 1,

Yan-13N-4 = -3, Vov-138-3 = V5, Yavorav—2 = —1,

Van—13N-1 = _\/§, Van—138 = _\/57 Yovjin—2 = %bs

Vonn—1 = —V3(oty + 225 /hx),  Yanay = V5(o + 62x/hy),

g1 =T, q2= W, g = oTs.
The remaining components of matrix [I'] and vector of the right-hand side Q are equal to zero. The
components of vector V have the form

Vi =aw, Va=bu, Vvi=cu, ..., Vy2=dam, Vn-1=Dby, VN=cCm

The matrix of system [I'] contains 2N rows and 3N columns. We express parameters b, (¢) and c;(t)
through functions a;(¢) and vector Q. Transposing the columns of the matrix being coefficients at a;(¢)
(first, fourth, seventh and etc.) to the right-hand side of the system (11), we form a matrix [B] from them.
Denote those retained on the left-hand side, as the matrix [A] of dimension 2N x 2N, and obtain a system

[A]Y = [BIX +Q,

where Y is vector with components by () and ¢y (¢) (i = 1,N), and X is vector from coefficients a;(r). The
solution of this system can be written as

= |A*X + Q" (12)

where

A"] =[A]"'B], Q =[A]"'Q

The matrix |A*] has 2N rows and N columns; the vector Q" contains 2N components.

Now let us return to Cauchy problem (5) and reduce it to the standard form. For this purpose, we obtain
matrix LAJ and vector Q from even rows of |A*] and Q* by multiplying each of rows by v,12v/54,/h2,
i =1,N. Also, expression v« is subtracted from diagonal elements of matrix LAJ Then the system (5) takes
the form
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X =]A|X+Q. (13)

Functions b;(¢) and ¢y () are obtained from relationship (12).

The system (13) is integrated by a modified method of expanding the solution into a Taylor series
(Shupikov and Ugrimov, 1999). Note that if the components of matrix LAJ and vector Q do not depend on
time, by virtue of the properties of matrix LAJ, the solution of the problem (13) approaches the solution of a
steady-state problem. In this case the coefficients of expansion (2) for polynomials, higher than the first
degree, tend to zero with time.

3. Non-stationary heat conduction in a laminated plate

Now consider a rectangular laminated plate assembled from N isotropic layers. The geometrical di-
mensions of a plate in direction of coordinate axes Ox and Oy are designated as /, and /,, respectively.

The heat conduction equation for ith layer of a plate can be written as
or o 9 @
fAT:*? .:1727"'7 ) A=—+_— =5 14
g o ! g w2 (14)

We consider the problem as symmetrical with regards to coordinate axes Ox and 0y. Consequently, the
solution of Eq. (14) can be represented in the form (2)

(x,9,2i,) Z Z [akz )1(2) + b;(z(t)ﬁ(z) + Ci,(t)fﬂf)} cos (ox) cos (‘xyly)a (15)

where
0<x<1/2, 0<y<L/2, oy =2n(k—1)/l,, ay=2r(l-1)/1,.

Projection of Eq. (15) into functions f, Eq. (3), in view of the function orthogonality condition (4), yields
a system of differential equations

y 12V5 . . S
ay = Vi—3— 72 Ch — (“ik + “i/)“;m by = —vi (“ﬁk + aﬁ,)bjd, g = —Vi (“xk +a l)ck/ (16)

Writing down the boundary conditions of convective heat transfer over top and bottom plate surfaces,
we obtain

. (bi12\/—+ck16‘/_)*a‘(n = b3 - Ckl\/_)

Iy
Z—N (b%Z\/g - 02’16\@) = o (Tb —ay + b3~ cﬁ’,\/g),
N

as well as conditions of equality of heat flows and temperatures on interfaces of layers

(b;,zf ¢, 6v3) + ) fis) (bi'2v3+ i'6v5) =0,

1+1

au bkl\/_+ckl\/_ a;c;rl*bzr]\/g*ckll\/_ 0.

For each pair of harmonics, k and /, a system of linear algebraic equations in coefficients aj,(¢), b},(¢) and
¢, (¢) similar to the system (11) is formed. The coefficient of expansion of a function of intensity for heat
source W(x,y) (heat-generating film occupying rectangular area: 0<|x|</;/2, 0<|y[<[}/2) is trans-
formed to the form
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4
L,

B2 )2
W = / W (x,y) cos (ayx) cos (o) dxdy. (17)
o Jo

The comparison of basic relations for a laminated strip (5) and plate (16) displays that a distinction exits
in the formation of matrix LAJ, from its diagonal elements, instead of coefficients v,-aci, coefficients
vil o + ocfl) are subtracted. The obtained system of differential equations is solved numerically by method
of ‘expansion of the solution in a Taylor series similar to system (13).

4. Numerical examples

The functionality of the method offered is illustrated by considering the heating of five-layer strips and
rectangular plates. The material properties of the layers are presented in Table 1. The following designa-
tions are introduced: A is silicate glass, B is polyvinylbutyral, and C is acrylic.

There is a convective heat transfer over top and bottom surfaces of strips and plates. Convective heat
transfer coefficients and temperature of environments over the top and bottom surfaces of a package are as
follows: o, = 80 W/m?K, o, = 25 W/m?K, T, = 257 K and T;, = 293 K. The initial temperature of layers is
taken to be 273 K. The geometrical parameters of a strip are: / =0.9m, s, =5x 1073 m, h, =3 x 103 m,
h=15%x1072m, hy =2x 103 m, hs =2 x 107> m.

For confirmation of reliability of the results obtained by the proposed method, let us compare them to
the calculation performed by the finite element method (FEM). A strip with the composition A-B-A—B-A is
considered. The source power is zero.

Fig. 2 shows the temperature distributions obtained by the proposed method and FEM, for some in-
stances. The results are in good agreement, proving the accuracy of the method.

In the case where a strip contains a heat-generating film, the results of calculations are also very closely
spaced. The maximum error does not exceed 0.5%. However, the simulation of heat generation in the film
by FEM requires application of additional computational (implicit) techniques, as in the finite element
formulation, the heat-generating layer should have a finite thickness. In the method proposed by the au-
thors, the presence of a heat-generating layer is taken into account precisely in a condition of equality of
heat flows at interfaces of layers (8).

Consider now the thermal condition of strips and plates containing a heat-generating film with power
W =3500 W/m?, I*/1 =0.75, I} /1, = I;/1, = 0.75 (see Eqs. (10) and (17)). As it has been specified above,
we arrange the film between the first and the second layers of strips or plates.

Fig. 3 shows the temperature distribution through the thickness of the strip with the composition
A-B—A-B-A at different instants of time in the central point x = 0. The dash—dot line designates the position
of the heat-generating film in the package of layers. At 1 = 1 s the temperature distribution is non-linear
through the thickness of layers, which is appreciable especially in the third and the fifth layers. With time,
the temperature distribution in all layers also becomes linear (curve 3, = 10* s). Quadratic terms in the set
of functions (3) essentially influence on the problem solution (2) during the time interval 0 <t < 10° s. A

Table 1
Material properties of layers
Property Material
A B C
/i (W/mK) 1.60 0.17 0.21
¢; (kJ/kgK) 0.75 1.50 1.40

p, (kg/m?) 2500 1200 1200
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Fig. 2. Temperature distributions through the thickness of a strip at point x = 0 obtained by the proposed method (¢ ¢ %) and FEM
(-~ — —); composition A-B-A4-B-A.

large temperature gradient is observed in layers close to the surface with the heat-generating film (n = 2).
Since t = 5 x 10* s the temperature field does not practically vary, i.e. it stays steady. In the exact solution
of a steady problem the temperature varies through the thickness of layers linearly. In this case the system
of differential equations (5) is reduced to a system of linear algebraic equations.

Fig. 4 shows the similar distribution for the strip with the composition 4—B—C—B-C. The distribution is
non-linear through layer thicknesses, except for the first one. A large temperature gradient near the heated
surface (curves 2 and 3) can result in significant temperature stresses within the strip. At ¢ = 10* s the
temperature field becomes a stationary one. Thus, material C hinders fast heat transfer.

Figs. 5 and 6 show the temperature variation along the length of strips on the surface with the film for
compositions 4-B—-A4-B-A4 and A-B—C-B-C, respectively. An increased temperature gradient along spatial
coordinate x is observed near the edges of the film (the dash—dot line), that can result in significant tem-
perature stresses in layers in this area. The temperature field is steady for compositions A-B—4-B-A and
A-B-C-B-C since t = 5 x 10* s and ¢ = 10* s, respectively.

Temperature profiles over other surfaces of strips, as a whole, follow the obtained distributions but
smooth out in the area of large temperature gradients along the spatial coordinate.
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Fig. 3. Distribution of temperature 7 through the thickness of a strip at point x =0 at different instants of time: 1 —¢=1 s,
2—t=5x10283—-t=103s,4—-t=5x%x10*s,5—t=10*s, 6 —t =2 x 10* s; composition A-B-A-B-A.
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Fig. 4. Distribution of temperature 7' through the thickness of a strip at point x =0 in different instants of time: 1 —¢#=1 s,
2—t=5x105,3-t=10"s,4—t=5x10%s,5—t=10*s, 6 —t =2 x 10* s; composition 4-B—C-B—C.

In the case of plates, two compositions are considered as well. Thicknesses of layers coincide with the
previous values taken for strips, and the lengths of sides are equal to 0.4 m. The analysis of calculations has
shown that the temperature distributions through thickness of plates are similar to distributions for strips
and, therefore, are not presented. Figs. 7 and 8 show the temperature distributions over the surface with the
film at t = 10° s for compositions A—-B-A4-B-A and A-B-C—B-C, respectively.

A comparison of the results for the first and second compositions both for strips and for plates displays
that the first composition allows a more uniform temperature distribution to be reached, and the tem-
perature field reaches its steady state faster. In structures with composition 4—-B—C-B—C temperature
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Fig. 5. Variation of temperature T along length of a strip (x € [0,7/2]) at different instants of time: 1 —¢=1s,2—¢=15x 10* s,
3—t=10s,4—t=5x%x10%s,5—t=10%s, 6 —t =2 x 10* s; composition 4-B—4-B-A. surface n = 2.
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Fig. 6. Variation of temperature T along length of a strip (x € [0,//2]) at different instants of time: 1 —¢t=15s,2—¢=5x 10% s,
3—t=10s,4—t=5x%x10%s,5—t=10%s, 6 —t =2 x 10* s; composition 4-B—C-B—C; surface n = 2.

gradients through thickness and length of strips or plates are greater than in structures with composition
A-B-A-B-A. 1t results in high temperature stresses, which must be taken into account at evaluation of
functionality of a real glazing.

5. Conclusions

A new method of solution of non-stationary heat conduction problem in laminated strips and plates is
proposed. The transient temperature change is caused by an impulse action of a distributed heat source
simulating a heat-generating film. Temperature distribution through the thickness of each layer is repre-
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Fig. 7. Temperature distribution over the surface of a plate (n = 2, x € [0,1/2], y € [0,1/2]) at the instant of time # = 10* s; composition
A-B-A-B-A.
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Fig. 8. Temperature distribution over the surface of a plate (n = 2, x € [0,1/2], y € [0,1/2]) at the instant of time r = 10’ s; composition
A-B-C-B—C.

sented by using Legendre orthonormal polynomials, which allows authentic (with a necessary accuracy)
description of the thermal condition of laminated elements assembled from layers with different mechanical
and geometrical characteristics.

The temperature fields are investigated using some examples of five-layer strips and plates. The change of
heat-generating film power, and temperature of environment, can be given by any function of coordinates
and time. The comparison of calculation results obtained by the proposed method to those obtained by
FEM has confirmed their reliability.
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The solution of such problems has practical importance, as the results of this research can be applied, for
example, to the analysis of the efficiency of de-icing and de-misting performances of heating systems for
windshields.
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